Fingerprint recognition

Date: 12.12.2015 Category: Security

Fingerprint recognition  - Access Control Sensors

A few facts about fingerprints:

No two fingerprints are the same

It remains the most commonly used forensic evidence worldwide

There are two methods of fingerprint recognition – Fingerprint sensors and Algorithms

Various types of Fingerprint sensors:

A fingerprint sensor is an electronic device used to capture a digital image of the fingerprint pattern. The captured image is called a live scan. This live scan is digitally processed to create a biometric template (a collection of extracted features) which is stored and used for matching.

Types of Fingerprint sensors:

Optical

Optical fingerprint imaging involves capturing a digital image of the print using visible light. This type of sensor is, in essence, a specialized digital camera. The top layer of the sensor, where the finger is placed, is known as the touch surface. Beneath this layer is a light-emitting phosphor layer which illuminates the surface of the finger. The light reflected from the finger passes through the phosphor layer to an array of solid state pixels (a charge-coupled device) which captures a visual image of the fingerprint. A scratched or dirty touch surface can cause a bad image of the fingerprint. A disadvantage of this type of sensor is the fact that the imaging capabilities are affected by the quality of skin on the finger. For instance, a dirty or marked finger is difficult to image properly. Also, it is possible for an individual to erode the outer layer of skin on the fingertips to the point where the fingerprint is no longer visible.

Ultrasonic    

Ultrasonic sensors use very high frequency sound waves to penetrate the epidermal layer of skin. The sound waves are generated using piezoelectric transducers and reflected energy is also measured using piezoelectric materials. Since the dermal skin layer exhibits the same characteristic pattern of the fingerprint, the reflected wave measurements can be used to form an image of the fingerprint. This eliminates the need for clean, undamaged epidermal skin and a clean sensing surface.

Capacitance

Capacitance sensors use principles associated with capacitance in order to form fingerprint images. In this method of imaging, the sensor array pixels each act as one plate of a parallel-plate capacitor, the dermal layer (which is electrically conductive) acts as the other plate, and the non-conductive epidermal layer acts as a dielectric.

Algorithms:

Matching algorithms are used to compare previously stored templates of fingerprints against candidate fingerprints for authentication purposes. In order to do this either the oriinal image must be directly compared with the candidate image or certain features must be compared.

Pattern based algorithms compare the basic fingerprint patterns (arch, whorl, and loop) between a previously stored template and a candidate fingerprint. This requires that the images can be aligned in the same orientation. To do this, the algorithm finds a central point in the fingerprint image and centers on that. In a pattern-based algorithm, the template contains the type, size, and orientation of patterns within the aligned fingerprint image. The candidate fingerprint image is graphically compared with the template to determine the degree to which they match.